روشهای چند گامی برای حل معادلات دیفرانسیل کسری و بررسی پایداری آنها

پایان نامه
چکیده

در این پایان نامه روشهای عددی برای حل معادلات دیفرانسیل از مرتبه کسری را بررسی می کنیم. تمرکز ما روی روشهای چندگامی کسری از هر دو نوع صریح و ضمنی است. استفاده از روشهای صریح در حل عددی معادلات دیفرانسیل از مرتبه کسری موضوعی است که هنوز عمیقاً تحقیق نشده است. در اینجا خواص پایداری برخی روشهای چندگامی از نوع صریح مورد مطالعه قرار گرفته و روشهای جدید با بازه های پایداری بزرگتر پیشنهاد شده است. همچنین مثال های عددی به منظور اعتبار نتایج نظری ارائه شده است. در نهایت نیز از میان روشهای ضمنی فقط به دسته ای از روشهای چندگامی خطی آدامز-مولتن خواهیم پرداخت و روی خاصیت پایداری آنها تمرکز خواهیم کرد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روشهای صریح برای معادلات دیفرانسیل کسری و خواص پایداری آنها

در این پایان نامه روشهای چندگامی خطی کسری معرفی و خواص پایداری آنها بررسی می شود . سپس روشهایی با بازه پایداری وسیع تر بررسی و کارآیی آنها برای حل مسائل سخت مشخص می شود .

15 صفحه اول

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

روشهای عددی برای حل معادلات دیفرانسیل کسری

این پایان نامه در پنج فصل تدوین شده است. در فصل اول به بیان مفاهیم اساسی در مورد مشتقات و انتگرالهای کسری معادلات دیفرانسیل کسری و اثبات قضایایی در مورد آنها پرداخته شده است. در فصل دوم روش تجزیه آدمین و همچنین روش تجزیه آدمین اصلاح شده برای حل معادلات دیفرانسیل کسری مورد بررسی قرار گرفته است. در فصل سوم روش تکرار تغییر برای حل این معادلات مورد بررسی قرار میگیرد. در فصل چهارم این سه روش بر روی ...

15 صفحه اول

بررسی پایداری طرح تفاضلات متناهی غیر استاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی از مرتبه کسری

عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...

متن کامل

بررسی پایداری طرح تفاضلات متناهی غیراستاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی خطی از مرتبه کسری

عمل گرهای مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبۀ دل خواه است. معادلۀ دیفرانسیل با مشتقات نسبی )[1](pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادلۀ دیفرانسیل با مشتقات نسبی کسری ([2](fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای به دست آوردن طرحی عددی، مشتق...

متن کامل

روشهای کارآمد برای حل عددی معادلات دیفرانسیل کسری غیرخطی

در این رساله ابتدا تابع بی اسپلاین خطی شبه متعامد و موجک آن را معرفی کرده و با استفاده از خواص این موجکها و با ساخت توابع دوگان برای این توابع به بررسی این نوع موجکها پرداخته و با استفاده از ماتریس عملیاتی مشتق کسری به حل مسائل مختلف کسری از جمله معادلات دیفرانسیل کسری خطی و غیرخطی و معادلات دیفرانسیل جزئی خطی کسری در بازه های متناهی می پردازیم سپس با معرفی توابع کاردینال چبیشف و بررسی خواص این...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023